408 research outputs found

    Poisson Structures of Calogero-Moser and Ruijsenaars-Schneider Models

    Full text link
    We examine the Hamiltonian structures of some Calogero-Moser and Ruijsenaars-Schneider N-body integrable models. We propose explicit formulations of the bihamiltonian structures for the discrete models, and field-theoretical realizations of these structures. We discuss the relevance of these realizations as collective-field theory for the discrete models.Comment: 15 pages, no figures; v2 references added, typos correcte

    AdS/CFT

    Get PDF

    Large N WZW Field Theory Of N=2 Strings

    Get PDF
    We explore the quantum properties of self-dual gravity formulated as a large NN two-dimensional WZW sigma model. Using a non-trivial classical background, we show that a (2,2)(2,2) space-time is generated. The theory contains an infinite series of higher point vertices. At tree level we show that, in spite of the presence of higher than cubic vertices, the on-shell 4 and higher point functions vanish, indicating that this model is related with the field theory of closed N=2 strings. We examine the one-loop on-shell 3-point amplitude and show that it is ultra-violet finite.Comment: This is the final version. By editorial mistake at Phys.Lett.B an older version was published in prin

    Equivalence of Two Dimensional QCD and the c=1c=1 Matrix Model

    Full text link
    We consider two dimensional QCD with the spatial dimension compactified to a circle. We show that the states in the theory consist of interacting strings that wind around the circle and derive the Hamiltonian for this theory in the large NN limit, complete with interactions. Mapping the winding states into momentum states, we express this Hamiltonian in terms of a continuous field. For a U(N)U(N) gauge group with a background source of Wilson loops, we recover the collective field Hamiltonian found by Das and Jevicki for the c=1c=1 matrix model, except the spatial coordinate is on a circle. We then proceed to show that two dimensional QCD with a U(N)U(N) gauge group can be reduced to a one- dimensional unitary matrix model and is hence equivalent to a theory of NN free nonrelativistic fermions on a circle. A similar result is true for the group SU(N)SU(N), but the fermions must be modded out by the center of mass coordinate.Comment: 15 pages, CERN-TH 6843/93, UVA-HET-93-0

    Large-N Collective Fields and Holography

    Full text link
    We propose that the euclidean bilocal collective field theory of critical large-N vector models provides a complete definition of the proposed dual theory of higher spin fields in anti de-Sitter spaces. We show how this bilocal field can be decomposed into an infinite number of even spin fields in one more dimension. The collective field has a nontrivial classical solution which leads to a O(N) thermodynamic entropy characteristic of the lower dimensional theory, as required by general considerations of holography. A subtle cancellation of the entropy coming from the bulk fields in one higher dimension with O(1) contributions from the classical solution ensures that the subleading terms in thermodynamic quantities are of the expected form. While the spin components of the collective field transform properly under dilatational, translational and rotational isometries of AdSAdS, special conformal transformations mix fields of different spins indicating a need for a nonlocal map between the two sets of fields. We discuss the nature of the propagating degrees of freedom through a hamiltonian form of collective field theory and argue that nonsinglet states which are present in an euclidean version are related to nontrivial backgrounds.Comment: 27 pages, harvmac. v2: references adde

    Generalized Conformal Symmetry in D-Brane Matrix Models

    Get PDF
    We study in detail the extension of the generalized conformal symmetry proposed previously for D-particles to the case of supersymmetric Yang-Mills matrix models of Dp-branes for arbitrary p. It is demonstrated that such a symmetry indeed exists both in the Yang-Mills theory and in the corresponding supergravity backgrounds produced by Dp-branes. On the Yang-Mills side, we derive the field-dependent special conformal transformations for the collective coordinates of Dp-branes in the one-loop approximation, and show that they coincide with the transformations on the supergravity side. These transformations are powerful in restricting the forms of the effective actions of probe D-branes in the fixed backgrounds of source D-branes. Furthermore, our formalism enables us to extend the concept of (generalized) conformal symmetry to arbitrary configurations of D-branes, which can still be used to restrict the dynamics of D-branes. For such general configurations, however, it cannot be endowed a simple classical space-time interpretation at least in the static gauge adopted in the present formulation of D-branes.Comment: 26 pages, no figure

    Systematic 1/N1/N corrections for bosonic and fermionic vector models without auxiliary fields

    Full text link
    In this paper, colorless bilocal fields are employed to study the large NN limit of both fermionic and bosonic vector models. The Jacobian associated with the change of variables from the original fields to the bilocals is computed exactly, thereby providing an exact effective action. This effective action is shown to reproduce the familiar perturbative expansion for the two and four point functions. In particular, in the case of fermionic vector models, the effective action correctly accounts for the Fermi statistics. The theory is also studied non-perturbatively. The stationary points of the effective action are shown to provide the usual large NN gap equations. The homogeneous equation associated with the quadratic (in the bilocals) action is simply the two particle Bethe Salpeter equation. Finally, the leading correction in 1N1\over N is shown to be in agreement with the exact SS matrix of the model.Comment: 24 pages, uses REVTEX macros. Replaced with final version to appear in Phys. Rev.

    The Collective Field Theory of a Singular Supersymmetric Matrix Model

    Full text link
    The supersymmetric collective field theory with the potential v(x)=ωxηxv'(x)=\omega x-{\eta\over x} is studied, motivated by the matrix model proposed by Jevicki and Yoneya to describe two dimensional string theory in a black hole background. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeros of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a majorana fermion. The xx space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.Comment: Revtex 8 pages, Submitted to Phys. Rev. D. References and preprint numbers have been adde

    Lumps and P-branes in Open String Field Theory

    Get PDF
    We describe numerical methods for constructing lump solutions in open string field theory. According to Sen, these lumps represent lower dimensional Dp-Branes and numerical evaluation of their energy can be compared with the expected value for the tension. We take particular care of all higher derivative terms inherent in Witten's version of open string field theory. The importance of these terms for off shell phenomena is argued in the text. Detailed numerical calculations done for the case of general pp brane show very good agreement with Sen's conjectured value. This gives credence to the conjecture itself and establishes further the usefulness of Witten's version of SFT .Comment: 11 pages, 1 figure, 1 table; v2: small typos correcte
    corecore